DO NOT TURN THIS PAGE!!!!!

Physics 2A
Winter 2010
Exam 1

MAKE SURE TO SHOW ALL WORK IN COMPLETE DETAIL. NO CREDIT WILL BE GIVEN IF NO WORK IS SHOWN. EXPRESS ALL ANSWERS IN SI UNITS.

1. At a construction site a pipe wrench fell from rest and struck the ground with a speed of $30 \mathrm{~m} / \mathrm{s}$. (10 pts)
a) Calculate the height it was dropped from.
b) Calculate how long it was falling.
c) Draw the graph of a vs t, v vs. t, and y vs. t.

a)

$$
\begin{aligned}
& v_{y}^{2}=y_{y}^{0}+2 a_{y}\left(y-y_{8}\right) \\
& (30)^{2}=2(9.8)(H-0) \\
& H=45.9 \mathrm{~m}
\end{aligned}
$$

b)

$$
\begin{aligned}
& v_{y}=v_{y} y+a_{y} t \\
& 30=(9.8) t \\
& t=3.06 \mathrm{~s}
\end{aligned}
$$

c)

$$
\begin{aligned}
& y=y_{0}^{5}+y_{0 y}^{\sigma} t+\frac{1}{2} a_{y} t^{2} \\
& y=4.9 t^{2} \\
& v_{y}=9.8 t \\
& a_{y}=+9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

2. In the figure below, a radar station detects an airplane approaching directly from the east. At first observation, the plane is at $d_{1}=370 \mathrm{~m}$ from the station and at $\theta_{1}=40^{\circ}$ above the horizontal. The airplane is tracked through an angular change $\Delta \theta=130^{\circ}$; its distance is then $\mathrm{d}_{2}=780 \mathrm{~m}$. (10 pts)
a) Sketch the displacement vector of the plane in the figure below.
b) Find the displacement of the plane during this time in unit-vector notation.
c) Calculate the magnitude and direction of the displacement vector.
 b) $D \vec{r}=\vec{d}_{2}-\vec{d}_{1}$

$$
\begin{aligned}
& \varphi=\tan ^{-1}\left|\frac{360}{-784}\right|=1 \\
& \varphi=24.7^{\circ} \\
& \theta=180-Q=155.3^{\circ}
\end{aligned}
$$

3. A projectile is thrown from the edge of a building with an initial speed of $65.0 \mathrm{~m} / \mathrm{s}$ at an angle of 37° with the horizontal. The height of the building is 150 m . See figure below. (10 pts)

$$
\begin{aligned}
& a_{x}=0 \\
& a_{y}=-g=-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

a) Calculate the time for the projectile to strike the ground.
b) Calculate the range X of the projectile.
a) $y=x_{0}^{r} t v_{\text {or }} t+\frac{1}{2} a_{r} t^{2}$
$\begin{aligned}-150= & (65 \sin 37) t-4.9 t^{2} \\ & (t=10.8 \mathrm{~s} \\ \text { b) } x= & x_{0}^{\pi}+U_{0 x} t+\frac{1}{2} g \times x t^{12} \\ x= & (65 \cos 37)(10.8)=561 \mathrm{~m}\end{aligned}$
4. A clock has a second hand of length 20 cm . From the 12 P.M mark to the 9 P.M mark, for the tip of the second hand, :
a) Calculate the displacement vector in unit-vector notation.
b) Calculate the average velocity vector in unit-vector notation.
c) Calculate the period of rotation.
d) Calculate the speed.
e) Calculate the instantaneous acceleration vector in unit-vector notation as it passes through the 6 P.M mark.
f) Calculate the average acceleration vector in unit-vector notation.

b) $\vec{V}_{\text {ave }}=\frac{\Delta \vec{r}}{\partial t}$
c) $T=60 \mathrm{~s}$
d) $v_{i=}=v_{f}=\frac{2 \pi}{3} \frac{c m}{s}$
e) $a_{r}=\frac{v^{2}}{r}=\left(\frac{2 \pi}{3}\right)^{2} \frac{1}{20}\left(\frac{(m)}{s^{2}}\right)$
f) $\vec{a}_{\text {ave }}=\frac{\Delta \vec{v}}{\Delta t}=\frac{\vec{v}_{+}-\vec{v}_{i}-\frac{2 \pi}{3} \hat{j}-\frac{2 \pi}{3} \hat{\imath}}{45}\left(\frac{\mathrm{~cm}}{s^{2}}\right)$

